Study of Biologically Active Compounds of the Roots of *Prangos biebersteinii* Karjag.

I.H. Heydarov, S.V. Serkerov*

Institute of Botany, Azerbaijan National Academy of Sciences, 40 Badamdar Highway, Baku AZ1004, Azerbaijan; E-mail: s.serkerov@mail.ru

The roots of *Prangos biebersteinii* Karjag. collected from Beshbarmak mountains were investigated. Seven crystalline substances of the coumarin nature were isolated from an acetone extract of *P. biebersteinii* roots using the method of column chromatography (Al₂O₃, III-IV degree activity): $C_{16}H_{14}O_4$, m.p. 108.0-109.0°C (1), $C_{15}H_{16}O_3$, m.p. 84.0-85.0°C (2), $C_{16}H_{14}O_5$, m.p. 145.0-146.0°C (3), $C_{16}H_{16}O_5$, m.p. 109.0-110.0°C (4), $C_{16}H_{14}O_5$, m.p. 141.0-143.0°C (5), $C_{16}H_{16}O_6$, m.p. 137.0-138.5°C (6), $C_{11}H_6O_4$, m.p. 286.0-279.5°C (7). On the basis of physical and chemical properties (elemental composition, melting temperature) and spectral (UR- and NMR-spectra) data they were identified as isoimperatorin (1), ostol (2), isooxypeucedanin (3), pranferol (4), peucedanin (5), oxypeucedanin hydrate (6) and bergaptol, respective (7).

Keywords: Prangos, roots, sum of substances, chromatography, individual, UR-spectroscopy, NMR-spectroscopy, chemical shift.

INTRODUCTION

The species which on morphological features quite differs from *Prangos ferulacea* species I.I.Karjagin in agreement with A.A.Grossheim named as *Prangos biebersteinii* in honor of M.Bieberstein who collected and separated it from the East Caucasian "race" for the first time (Karjagin, 1955). But recently, the species *P. biebersteinii* was merged with *Prangos ferulacea* (L.) Lindl. and represent as a synonym of the latter species (Menitsky, 2008).

Literature data on chemical studying of *P. biebersteinii* is relatively rare (Abyshev et al., 1973, 2003; Abyshev, Brodsky, 1974).

The studied plant species *P. biebersteinii* is characterized by the presence in their composition of biologically active coumarin derivatives as well as most representatives of *Apiaceae* family. Conversely there are a great number of scientific works devoted to the chemical study of *P. ferulacea* which is merged to this species (Abyshev, 1969, 1974: Abyshev et al., 1972, 1973, 1974; Kuznetsova, Abyshev, 1965a, 1965b).

MATERIAL AND METHODS

The research object representing the dried and finely ground roots of *Prangos biebersteinii* Karjag. (155 g) which were collected in 09.05.2014 from Beshbarmag mountains in the flowering phase was extracted with acetone. Output of the sum of extractive substances was 5.16%. For isolation of individual compounds the 8.0 g extractive substances subjected to the column chromatography method in

columns (h=45 cm, d=2.5 cm) filled with neutral (with III-IV activity degree) Al₂O₃. An identity of obtained substances using of thin layer chromatography on Silufol UV-254 plates is confirmed. An individual compounds based on physical-chemical (elemental composition, melting point) properties and on information received at the detection of IR-and NMR-spectra were identified. IR-spectra in Varian 640-IR spectrometer, NMR-spectra in Bruker 300 spectrometer at the 300 MHz resonance frequency in DMSO-d₆ solvent were registered. The melting points (m.p.) of individual compounds in Boethius table were determined.

RESULTS AND DISCUSSION

From the fractions obtained as a result of elution of chromatographic column with solvents hexane, benzol, chloroform and their mixtures in different ratios from the sum of extractive substances of *Prangos biebersteinii* Karjag. roots 7 compounds in individual state have been isolated.

Compound-1. From fractions of 1-2 eluted with hexane a compound with elemental composition of $C_{16}H_{14}O_4$ and melting point (m.p.) of 108.0-109.0°C was obtained.

IR-spectrum of compound contains absorption bands relating to carbonyl group of δ -lactone ring (1723 cm⁻¹) and double bonds of aromatic system (1626, 1601, 1579, 1544 cm⁻¹). The studied compound 1 has been identified as izoimperatorin by comparison of its IR-spectra with IR-spectra of known coumarin derivative isoimperatorin (Serkerov and Aleskerova, 2006). *Compound-2.* The elemental composition and melting point of the compound 2 obtained from fractions of 5-6 eluted by hexane were $C_{15}H_{16}O_3$ and m.p. of 84.0-85.0°C, respectively.

In the area of characteristic IR-spectrum absorption frequencies the bands of lactone ring carbonyl group (1721 cm⁻¹) and aromatic system double bands (1604, 1564, 1498 cm^{-1}) have been revealed. The signals revealed in ¹H NMR-spectrum of compound: two singlets with 3H area of each (1.60; 1.80 ppm), doublet with 2H area (3.40 ppm, J=4.5 Hz) and triplet with 1H area (5.11 ppm, J=4.5 Hz) prove the existence of open side chain (-CH2- $CH=C(CH_3)_2$) consisting 5 carbon atoms in molecule. The signals detected in lower magnetic field of spectrum: 6.20 (d., J=9.65 Hz, 1H, H-3), 7.91 (d., J=9.65 Hz, 1H, H-4), 7.50 (d., J=9.10 Hz, 1H, H-5) and 7.00 ppm (d., J=9.10 Hz, 1H, H-6) characterize double bonds of aromatic cycle of the compound. The singlet with chemical shift of 3.89 ppm in spectra is the evidence of metoxy-group $(-OCH_3)$ in the structure of the studied compound.

Thus, the results obtained from the detection of IR- and ¹H NMR-spectra indicate that the structure of the compound 2 is identical with ostol (Gasimova, Serkerov, 2011).

Compound-3. The elemental composition and melting point of the compound obtained from fractions eluted by mixture of benzole and chloroform (2:1) were $C_{14}H_{14}O_5$ and of 145.0-146.0°C, respectively. In IR-spectrum of the compound absorption bands relating to δ -lactone cycle (1744 cm⁻¹), ketone group (1616 cm⁻¹) and double bonds of aromatic system (1622, 1579, 1546, 1513 cm⁻¹) have been revealed. By direct comparison of IR-spectrum of studied compound with IR-spectrum of isooxypeucedanin compound 3 was identified as isooxypeucedanin (Serkerov, Aleskerova, 2006).

Compound-4. The elemental composition and melting point of the compound obtained from fractions of 78-80 of the chromatographic column eluted by mixture of benzole and chloroform (1:1) were $C_{16}H_{16}O_5$, m.p. 109.0-110.0°C, respectively. In the area of characteristic IR-spectrum absorption frequencies the bands characterizing of hydroxyl group (3450-3200 cm⁻¹), C=O group of δ -lactone cycle (1706 cm⁻¹) and double bonds of coumarin structure (1628, 1619, 1575, 1547 cm⁻¹) were detected.

In IR-spectrum of the studied compound there are two intensively bands in the area of 1600-1650 cm⁻¹. This is characteristic for spectra of 5-mono-substituted furocoumarins, for example oxypeuce-danin. However, for spectra of 8-monosubstituted furocoumarins, for example in the same area of spectra of the prangenin, prangenin hydrate, imperatorin only one weak band (1625-1620 cm⁻¹) appears (Kuznetsova, 1967).

Thus taking into account abovementioned facts and also directly comparing IR-spectra of pranferol and studied coumarin derivative the compound 3 was identified with 5-monosubstituted furocoumarin - pranferol (Sererkov, Aleskerova, 2006).

Compound-5. The elemental composition and melting point of the compound obtained from fractions of 88-91 of the chromatographic column eluted by mixture of benzole and chloroform (1:2) were $C_{16}H_{16}O_5$, m.p. 141.0-143.0°C correspondingly. In the area of characteristic IR-spectrum absorption frequencies the absorption bands relating to C=O group of δ -lactone cycle (1735 cm⁻¹) and double bonds of aromatic system (1630, 1610, 1590 cm⁻¹) have been revealed.

In ¹H NMR spectrum of studied compound 5 singlet signal (s., 1.30 and 1.40 ppm) attributed to 2 methyl group; quartet peak (3.20 ppm, J_1 =4.14, J_2 =6.43 Hz) attributed to proton bound with carbon atom of epoxy cycle; 2 quartet each with area of 1H (4.40 and 4,60 ppm, J_1 =4.14, J_2 =11.03 Hz) attributed to oxygen-bound methylene group (-CH₂-). These signals provide an opportunity to confirm that simple side ethereal chain as

-group is present in the structure of studied compound. The signals detected in in lower magnetic field of spectrum: doublets each 1H area (6.25, J=9.50 Hz and 8.15 ppm, J=9.50 Hz; 6.95, J=2.10 Hz and 7.60 ppm, J=2.30 Hz) and singlet (7.15 ppm) were attributed to protons in positions of C-3, C-4, C-2', C-3' and C-8 of the furocoumarin structure.

The results obtained from IR- and ¹H NMRspectra proves that a structure of compound-5 is identical with structure of oxypeucedanin.

Compound-6. The elemental composition and melting point of the compound obtained in individual state from fractions of 129-130 of the chromatographic column eluted by mixture of benzole and chloroform (1:3) and chloroform were $C_{16}H_{16}O_6$, m.p. 137.0-138.0°C, respectively.

In the area of characteristic IR-spectrum absorption frequencies the bands characterizing of hydroxyl group (3400 cm⁻¹), C=O group of δ -lactone cycle (1703 cm⁻¹) and double bonds of aromatic system (1618, 1603, 1575, 1554 cm⁻¹) are present.

In the ¹H NMR spectrum of the compound the signals relating to 2 methyl groups (s., 1.30 and 1.40 ppm), 2 hydroxyl groups (s., 2.35 and 3.05 ppm), to protons of methylene (t., 4.45 and 4.55 ppm) and gem-hydroxyl (d., 3.90 ppm) groups were detected.

The signals detected in in lower magnetic field of ¹H NMR spectrum: 6.30 (d., J=9.65 Hz, 1H, H-3),

8.20 (d., J=9.65 Hz, 1H, H-4), 7.30 (s., 1H, H-8), 7.00 (d., J=2.30 Hz, 1H, H-3'), 7.60 m.h. (d., J=2.30 Hz, 1H, H-2') characterize furocoumarin part of the molecule. In ¹³C NMR spectrum of studied compound providing the presence of 16 carbon atoms in molecule 16 singlet signals (25.0; 27.0; 30.0; 71.0; 74.0; 94.0; 99.0; 104.0; 108.0; 111.5; 112.0; 119.0; 133.0; 139.0; 145.0; 161.0 ppm) were detected.

Seven signals that were not detected in ¹³C Dept 135 spectrum prove that the number of nonprotonated carbon atoms is seven. Based on abovementioned spectral data it is proved that the structure of compound-6 is identical to structure of oxypeucedanin hydrate.

Compound-7. The elemental composition and melting point of the crystalline compound obtained in individual state from fractions of 129-131 of the chromatographic column eluted by mixture of chloroform and ethanol (95:5) were $C_{11}H_6O_4$, m.p. 286.0-289.5°C, respectively.

In the IR-spectrum the bands characterizing of hydroxyl group (3226 cm⁻¹), C=O group of δ -lactone cycle (1690 cm⁻¹) and double bonds of aromatic system (1585, 1253, 824 cm⁻¹) were detected. These bands allow attributing studied compound to simple linear furocoumarins (Li et al., 2006; Ghada et al., 2015).

In ¹H NMR spectrum the signals were detected each with area of 1 proton unit: 6.19 (1H, d., J=9.90 Hz, H-3), 8.25 (1H, d., J=9.90 Hz, H-4), 11.10 (1H, HO–), 6.90 (1H, s., H-8), 7.76 (1H, d., J=2.40 Hz, H-2') and 7.48 ppm (1H, d., J=2.40 Hz, H-3').

The interpretation of IR- and ¹H NMR-spectral data prove that the structure of studied compound is identical to the structure of oxy-furocoumarin bergaptol.

The chemical structure of compounds identified as a result of researches:

Isoimperatorin

Bergaptol

CONCLUSIONS

1. From the roots of *Prangos biebersteinii* Karjag. collected in flowering phase from Beshbarmag mountain 7 coumarin derivatives in individual state have been obtained.

2. Based on physicochemical (elemental composition, melting temperature) properties and spectral (IR- and NMR) data the obtained individual coumarin derivatives were identified as izoimperatorin, ostol, izooxypeucedanin, pranferol, oxypeucedanin, oxypeucedanin hydrate and bergaptol.

REFERENCES

- Gasimova G.G., Serkerov S.V. (2011) The coumarin derivatives of *Heracleum pastinacifolium* C.Koch. *Azerbaijan Pharmacy and Pharmacotheraphy Journal*, **1**: 26-30 (in Azerbaijan).
- **Abyshev A.Z.** (1969) Chemical study of coumarins and furocoumarins from the roots and stems of *Prangos ferulacea* Lindl. Growing in Armenia. *Plant Resources*, **5(2):** 269-271 (in Russian).
- Abyshev A.Z. (1974) On the structure of some components from roots of *Prangos ferulacea*. *Chem. Nat. Comp.*, **5:** 568-574 (in Russian).
- Abyshev A.Z., Denisenko P.P., Kostyuchenko N.P. et al. (1972) Natural acetate of merancine hydrate new component of *Prangos ferulacea* roots. *Chem. Nat. Comp.*, **5**: 608-612 (in Rissian).
- Abyshev A.Z., Brodsky I.V., Ermakov A.I. et al. (1973) On the structure alatol. *Chem. Nat. Comp.*, **5**: 722-726 (in Russian).
- Abyshev A.Z., Brodsky I.V. (1974) Prandiol new dihydrofurocoumarin from *Prangos biebersteinii* roots. *Chem. Nat. Comp.*, **5:** 574 (in Rissian).
- **Karjagin I.I.** (1955) The genus *Prangos* Lindl. *Flora of Azerbaijan*, **6:** 417-422 (in Russian).

- **Kuznetsova G.A.** (1967) Natural coumarins and furocoumarins. L.: Nauka, 248 p. (in Russian)
- Kuznetsova G.A., Abyshev A.Z. (1965a) Coumarins and furocoumarins from *Prangos ferulacea* Lindl. roots. *Plant Resources*, **1(2)**: 221-224 (in Russian).
- **Kuznetsova G.A., Abyshev A.Z.** (1965b) Merancine hydrate – component of *Prangos ferulacea* Lindl. roots. *Journal Appl. Chem.*, **38:** 2370-2372 (in Russian).
- Kuznetsova G.A., Abyshev A.Z. (1965) Natural (–)-7-metoxy-8-(-dioxy-isopentenil)-coumarin. *Chem. Nat. Comp.*, **4:** 283-288 (in Russian).
- Menitsky Y.L. (2008) *Prangos* Lindl. *Synopsis of Flora of the Caucasus*, **3(1):** 69-70 (in Russian).
- **Serkerov S.V., Aleskerova A.N.** (2006) IR-spektra of sesquiterpene lactones and coumarins. Baku: CBS Production, 223 p. (in Russian).
- Ghada I., El-Shahat A.A., Kamillia A. et al. (2015) Biotransformation of furanocoumarins by *Cunninghamella elegans. Bulletin of Faculty of Pharmacy (Cairo University)*, **53(1):** 1-4.
- Li Y-H., Luo F., Feng S-L., Liang J., Ding L-S. (2006) A new dihydrocoumarin from the rhizomes of *Notoperguim forbesci*. *Natural Prod. Res.*, **20(9):** 860-865.

Prangos biebersteinii Karjag. Növünün Köklərinin Bioloji Fəal Maddələrinin Öyrənilməsi

İ.H. Heydərov, S.V. Sərkərov

AMEA Botanika İnstitutu

Prangos biebersteinii Karjag. (Biberşteyn çaşırı) növü köklərindən alınmış ekstraktiv maddələr cəmindən sütunlu xromatoqrafiya metodundan istifadə edərək fərdi şəkildə 7 kristallik maddə alınmışdır: $C_{16}H_{14}O_4$, ə.t. 108,0-109,0°C (1), $C_{15}H_{16}O_3$, ə.t. 84,0-85,0°C (2), $C_{16}H_{14}O_5$, ə.t. 145,0-146,0°C (3), $C_{16}H_{16}O_5$, ə.t. 109,0-110,0°C (4), $C_{16}H_{14}O_5$, ə.t. 141,0-143,0°C (5), $C_{16}H_{16}O_6$, ə.t. 137,0-138,5°C (6) və $C_{11}H_6O_4$, ə.t. 286,0-289,5°C (7). Alınmış maddələrin fiziki-kimyəvi xassələrinin (tərkibi, ə.t.) və spektral (İQ- və NMR-) xüsusiyyətlərinin tədqiq edilməsindən alınan nəticələr əsasında onlar uyğun olaraq izoimperatorinlə (1), ostolla (2), izooksipeysedaninlə (3), pranferolla (4), oksipeysedaninlə (5), oksipeysedanin hidratla (6), berqaptolla (7) identifikasiya edilmişdir.

Açar sözlər: Pranqos, köklər, maddələr cəmi, xromatoqrafiya, fərdi, İQ spektroskopiya, NMR spektroskopiya, kimyəvi sürücmə

Изучение Биологически Активных Веществ Корней Prangos biebersteinii Karjag.

И.Г. Гейдаров, С.В. Серкеров

Институт ботаники НАН Азербайджана

Исследованы корни *Prangos biebersteinii* Кагјад., собранные на горе Бешбармак. Из ацетонового экстракта корней *P. biebersteinii* методом колоночной хроматографии (Al₂O₃, III-IV степени активности) выделены 5 кристаллических веществ кумариновой природы: $C_{16}H_{14}O_4$, т.пл. 108,0-109,0°C (1), $C_{15}H_{16}O_3$, т.пл. 84,0-85,0°C (2), $C_{16}H_{14}O_5$, т.пл. 145,0-146,0°C (3), $C_{16}H_{16}O_5$, т.пл. 109,0-110,0°C (4), $C_{16}H_{14}O_5$, т.пл. 141,0-143,0°C (5), $C_{16}H_{16}O_6$, т.пл. 137,0-138,5°C (6), $C_{11}H_6O_4$, т.пл. 286,0-289,5°C (7), которые на основании физико-химических свойств (элементный состав, температура плавления) и спектральных (ИК- и ЯМР-спектры) данных идентифицированы, соответственно, с изоимператорином (1), остолом (2), изооксипейцеданином (3), пранферолом (4), оксипейцеданином (5), оксипейцеданин гидратом (6) и бергаптолом (7).

Ключевые слова: Прангос, корни, сумма веществ, хроматография, индивидуальный, ИК-спектроскопия, ЯМР-спектроскопия, химический сдвиг.